Asymmetric Synthesis of Epoxides from Aromatic Aldehydes and Benzyl Halides Catalyzed by C₂ Symmetric Optically Active Sulfides Having a Binaphthyl Skeleton

Yoshihiro Miyake, Arihiro Oyamada, Yoshiaki Nishibayashi, and Sakae Uemura

Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

Received 28 August 2001; revised 25 September 2001

ABSTRACT: Reactions of aromatic aldehydes with benzyl bromide or iodide in the presence of a catalytic amount (10 mol%) of a C_2 symmetric sulfide having a binaphthyl skeleton afford the corresponding trans-stilbene oxides in moderate to good yields with moderate enantioselectivities (up to 55% enantiomeric excess). The addition of tetra-n-butylammonium iodide to the catalytic reaction system much improves the yield of the epoxides. © 2002 Wiley Periodicals, Inc. Heteroatom Chem 13:270–275, 2002; Published online in Wiley Interscience (www.interscience.wiley.com). DOI 10.1002/hc.10028

INTRODUCTION

Optically active epoxides are versatile intermediates in the synthesis of pharmaceuticals and natural products. Direct asymmetric oxidation of alkenes has been studied as a synthetic method for the preparation of the corresponding *cis*-epoxides with high enantioselectivities [1]. In sharp contrast, the methods for the preparation of *trans*-epoxides with high enantioselectivities reported so far have been limited to only a few cases [2]. Reactions of sulfur ylides with aldehydes are known to give the corresponding *trans*-epoxides as major products. If chiral sulfur ylides were used, optically active epoxides might be obtained. The first attempt by Trost and co-workers in 1973 [3] to prepare optically active epoxides via chiral sulfur ylides resulted in failure, and since then many asymmetric reactions have been investigated. Recently, reactions of a stoichiometric amount of chiral sulfonium salts [4] with aldehydes have been investigated to afford the corresponding optically active *trans*-epoxides with high enantioselectivities.

In the stoichiometric reaction of sulfur ylides with aldehydes, sulfides are recovered together with the formation of epoxides. If sulfur ylides can be regenerated from the recovered sulfides in situ, the epoxide formation should be achieved in the presence of a catalytic amount of sulfides. In fact, successful examples of such catalytic reaction have been reported [5-8], but turnover frequencies (TOF) are quite low except for the case reported by Aggarwal [6]. These results prompted us to develop a more effective catalytic system for the synthesis of optically active trans-epoxides. Herein, we describe the catalytic formation of optically active trans-stilbene oxides from sulfur ylides and aldehydes by using a C_2 symmetric optically active sulfide having a binaphthyl skeleton 1 [9] (Fig. 1).

RESULTS AND DISCUSSION

First, the treatment of benzaldehyde with benzyl bromide in the presence of a stoichiometric amount of

Correspondence to: Sakae Uemura; e-mail: uemura@sci.kyoto-u.ac.jp.

^{© 2002} Wiley Periodicals, Inc.

FIGURE 1 C₂ symmetric optically active sulfide.

sulfide **1** [10] (to the aldehyde) and KOH in CH_2Cl_2 at room temperature for 24 h afforded *trans*-stilbene oxide in 66% yield with 54% enantiomeric excess (ee). No *cis*-stilbene oxide was detected by GLC and ¹H NMR spectroscopy. Since the stoichiometric reaction proceeded smoothly, we next attempted the catalytic reaction by using 0.1 equiv (to the aldehyde) of **1** under similar reaction conditions (Eq. 1).

PhCHO + PhCH₂Br
$$\xrightarrow{\text{cat. 1}}_{\text{base solvent, rt}} Ph^{(1)} (1)$$
 (1)

Typical results are shown in Table 1. *trans*-Stilbene oxide was produced in 15% yield with 47% ee (S, S) in 48 h (Table 1, entry 1). Interestingly, the addition of tetra-*n*-butylammonium iodide (*n*-Bu₄NI) to the reaction system much improved the yield of *trans*-stilbene oxide to 44% with 50% ee (*S*, *S*) in 24 h (Table 1, entry 2) [11]. Other bases such as KO-*t*-Bu, K₂CO₃, and Et₃N were revealed to be ineffective (Table 1, entries 2–5) and the addition of AgOTf or

TABLE 1Asymmetric Synthesis of *trans*-Stilbene Oxide using Several Bases and Additives

Entry	Solvent	Base .	Additive (equiv)	Yield (%) ^b	ee (%) ^c
1 ^{<i>d</i>}	CH ₂ Cl ₂	КОН	_	15	47
2	CH_2CI_2	KOH	<i>n-</i> Bu ₄ NI (1.2)	44	50
3 ^d	CH_2Cl_2	KO- <i>t-</i> Bu	<i>n</i> -Bu ₄ NI (1.2)	Trace	_
4	CH_2CI_2	K ₂ CO ₃	<i>n</i> -Bu ₄ NI (1.2)	4	41
5	CH_2CI_2	Et ₃ N	<i>n</i> -Bu ₄ NI (1.2)	0	-
6	CH_2CI_2	KOH	AgOTf (1.2)	Trace	_
7	CH_2CI_2	KOH	Nal (1.2)	7	18
8	C ₆ H₅CI	KOH	<i>n</i> -Bu ₄ NI (1.2)	Trace	62
9	CCI ₄	KOH	<i>n</i> -Bu ₄ NI (1.2)	11	61
10	DMSO	KOH	<i>n</i> -Bu ₄ NI (1.2)	69	0
11	CH₃CN	KOH	<i>n</i> -Bu ₄ NI (1.2)	0	_
12 ^e	CH_2CI_2	KOH	<i>n</i> -Bu ₄ NI (1.2)	96	32
13 ^e	CH₃CN	KOH	<i>n</i> -Bu ₄ NI (1.2)	57	4
14 ^{<i>f</i>}	CH_2CI_2	KOH	<i>n</i> -Bu ₄ NI (1.2)	8	53

^aReaction conditions: benzaldehyde (0.5 mmol), benzyl bromide (0.6 mmol), **1** (0.05 mmol), base (0.6 mmol), solvent (0.4 ml), room temperature, and 24 h under N_2 .

^bGLC yield after column chromatography.

^cDetermined by HPLC.

^dReaction time was 48 h.

 $^{e}H_{2}O$ (40 μ I) was added.

^fAt 0°C.

NaI prevented the formation of the epoxide (Table 1, entries 6 and 7). Reactions in chlorobenzene and CCl_4 gave the epoxide with 62% ee and 61% ee, respectively, but the yields of the epoxide were quite low (Table 1, entries 8 and 9). Reaction in DMSO produced the epoxide in good yield, but with no enantioselectivity (Table 1, entry 10). As KOH is not soluble in CH₂Cl₂, the reactions were carried out in the presence of a small amount of water to dissolve KOH. As a result, the product yields increased, but the enantioselectivity was lowered, unfortunately (entry 12). In various other solvents, no fruitful results were obtained in either product yield or enantioselectivity. The reaction at 0°C proceeded slowly to give the epoxide in low yield with 53% ee (Table 1, entry 14).

The molecular structure of the sulfide **1** was unambiguously clarified by an X-ray structural determination, and an Oak Ridge thermal ellipsoid plot (ORTEP) drawing of one of the three independent molecules of compound **1** in each unit cell is shown in Fig. 2. This ORTEP drawing clearly shows that the space around the sulfur atom may be sterically only slightly hindered. As the introduction of phenyl groups to the 2,6-positions of compound **1** makes the space around the sulfur atom sterically more hindered and higher asymmetric induction may be

FIGURE 2 The ORTEP drawing of optically active sulfide 1. Selected bond lengths, angles, torsion angle (Å, deg, deg): S1-C1 = 1.85(1); C1-C2 = 1.52(2); C2-C3 = 1.38(2); C3-C4 = 1.48(1); C4-C5 = 1.39(2); C5-C6 = 1.51(2); C6-S1 = 1.85(1); C1-S1-C6 = 100.4(6); S1-C1-C2 = 109.6(10); S1-C6-C5 = 110.0(9); C2-C3-C4-C5 = -58(1).

expected [12], we prepared the optically active sulfide $\mathbf{2}$ (Fig. 1). Unfortunately, however, the reaction of benzaldehyde with benzyl bromide in the presence of compound $\mathbf{2}$ (10 mol%) gave only a trace amount of stilbene oxide.

Reactions using other aldehydes and benzyl halides were next investigated in the presence of a catalytic amount of the sulfide **1** (Eq. 2).

Typical results are shown in Table 2. A higher vield of trans-stilbene oxide was obtained when benzyl iodide was used in place of benzyl bromide (Table 2, entries 1 vs. 2). It is noteworthy that the addition of *n*-Bu₄NI improved the yield of *trans*-stilbene oxide even when benzyl iodide was used (Table 2, entries 2 and 3). The reaction of benzyl iodide with other aromatic aldehydes was then examined in the presence of n-Bu₄NI (Eq. 2). The substituent at the para-position of these aldehydes had a major effect on the yield of the corresponding epoxides. The reaction of *p*-methylbenzaldehyde proceeded slowly to give the corresponding epoxide in low yield (Table 2, entry 4), while *p*-chlorobenzaldehyde gave a similar result as with benzaldehyde (Table 2, entry 5). On the contrary, *p*-nitrobenzaldehyde was almost completely consumed, but the expected epoxide was produced and isolated in only low yield because of the formation of various unidentified products. The best enantioselectivity (55% ee) was obtained when 2-naphtaldehyde was used as the aldehyde (Table 2, entry 8).

 TABLE 2
 Asymmetric
 Synthesis
 of
 trans-Stilbene
 Oxide

 Derivatives using Other Aromatic Aldehydes^a
 Image: Comparison of the synthesis
 Image: Comparison

Entry	R	X	Yield (%) ^b	ee (%) ^c	Con g.
1	Ph	Br	44	50	(<i>S</i> , <i>S</i>)
2	Ph	I	79	43	(S, S)
3	Ph ^d	I	26	29	(S, S)
4	<i>p</i> -MeC ₆ H₄	1	13	52	(S, S)
5	p-CIC ₆ H ₄		51	50	(<i>S</i> , <i>S</i>)
6	p-NO₂C ₆ H₄ ^e	1	6 ^{<i>f</i>}	51	(-)
7	1-Naphthyl		15	28	(-)
8	2-Naphthyl	Ι	30 ^{<i>f</i>}	55	(-)

^aReaction conditions: benzaldehyde (0.5 mmol), benzyl halide (0.6 mmol), **1** (0.05 mmol), KOH (0.6 mmol), *n*-Bu₄NI (0.6 mmol), CH_2Cl_2 (0.4 ml), room temperature, and 24 h under N₂.

^bGLC yield after column chromatography.

^cDetermined by HPLC.

^d In the absence of *n*-Bu₄NI.

^eReaction time was 6 h.

SCHEME 1 Plausible reaction pathway.

A plausible reaction pathway is shown in Scheme 1. The reaction of the sulfide **1** with benzyl halide affords a sulfonium salt (I) which gives the corresponding sulfur vlide (II) by deprotonation with KOH. The nucleophilic addition of II to the aldehyde results in the formation of the transepoxide, together with the starting sulfide 1. In our catalytic system, asymmetric induction can be rationalized by assuming the model shown in Scheme 2. Thus, the sulfur ylide II may exist in the form depicted in the scheme that emphasizes the interaction between the phenyl group and the binaphthyl skeleton. The nucleophilic attack of the carbon of compound II to the re face of the aldehyde would be favored leading to the formation of *trans*-(S,S)-stilbene oxide consistent with the experimental result. The reaction of benzyl bromide with iodide anion derived from *n*-Bu₄NI affords the more reactive benzyl iodide in situ and the tetra-*n*-butylammonium cation may also play some role as a phase transfer catalyst to accelerate the reaction, although the details of the reaction mechanism are not yet clear. In a separate experiment, we confirmed that the BF₄⁻ analogue of

SCHEME 2 Asymmetric induction model.

SCHEME 3 Reaction of sulfonium salt with benzaldehyde.

compound **I** (3), prepared separately, reacted with benzaldehyde in the presence of KOH (1.2 equiv) in CH_2Cl_2 at room temperature for 1 h to afford a 37% yield of *trans*-stilbene oxide with 33% ee (*S*, *S*) (Scheme 3). The enantioselectivity obtained here was slightly lower than that of the catalytic reaction (Table 2, entries 1 and 2). This result may suggest that the counter anion of the sulfonium salt plays some role in the asymmetric induction.

In conclusion, we found that a C_2 symmetric sulfide having a binaphthyl skeleton **1** worked as a chiral catalyst in the presence of *n*-Bu₄NI for the asymmetric reaction between aromatic aldehydes and benzyl halides to give the corresponding *trans*-stilbene oxides in moderate to good yields (up to 79%) with moderate enantioselectivities (up to 55% ee).

EXPERIMENTAL

General

¹H and ¹³C NMR spectra were measured on JEOL EX-400, JEOL JNM-AL300, and JEOL JNM-GSX270 spectrometers for solutions in CDCl₃ with Me₄Si as an internal standard. GLC analyses were carried out with a Shimadzu GC-14A instrument equipped with a CPB 10-S25-050 (Shimadzu, fused silica capillary column, 0.33 mm \times 25 m, 5.0 mm film thickness) column using helium as the carrier gas. GLC yields were determined using biphenyl as an internal standard. HPLC analyses were carried out on a HITACHI L-7100 instrument with an L-7300 column oven and an L-7400 UV detector using a Daicel Chiralcel OD column. Column chromatographies were performed with Merck silica gel 60.

Materials

Tetrahydrofuran (THF) was freshly distilled over sodium benzophenone ketyl just before use. Dichloromethane (CH_2Cl_2) and acetonitrile were distilled over calcium hydride under argon. Benzaldehyde was distilled under reduced pressure. Other commercially available organic and inorganic compounds were used without further purification. Benzyl iodide in benzene solution was prepared by ion exchange of benzyl chloride with sodium iodide. (*R*)-4,5-Dihydro-3*H*-dinaphtho[2,1-c:1',2'-e]thiepin (**1**) was prepared from (*R*)-BINOL according to the literature method [10].

Preparation of (R)-2,6-Diphenyl-4,5-dihydro-3Hdinaphtho[2,1-c:1',2'-e]thiepin (**2**)

This compound was prepared from (*R*)-3,3'-diphenylbinaphthol [12] according to the literature method [10]: A pale yellow solid; ¹H NMR (CDCl₃, 300 MHz): δ 3.34 (d, *J* = 12.8 Hz, 2H), 3.58 (d, *J* = 12.8 Hz, 2H), 7.23–7.93 (m, 20H); ¹³C NMR (CDCl₃, 75.45 MHz): δ 29.3, 125.9, 126.0, 127.0, 127.3, 128.2, 129.7, 130.2, 131.1, 131.7, 132.4, 134.7, 139.2, 141.1; HRMS Calcd for C₃₄H₂₄S *m*/*z* 464.1599 (M⁺), Found 464.1614.

General Procedure for Asymmetric Synthesis of Epoxides using Benzyl Iodide

After benzene was removed from a benzene solution of benzyl iodide (0.24 M; 1.0 ml, 0.24 mmol) under reduced pressure, CH_2Cl_2 (0.4 ml) was added and the mixture was stirred at room temperature under nitrogen. The sulfide (0.02 mmol), *n*-Bu₄NI (88.7 mg, 0.24 mmol), pulverized KOH (13.5 mg, 0.24 mmol), and the aldehyde (0.20 mmol) were added to the mixture and then the reaction mixture was stirred for 24 h. The resulting mixture was treated with water (10 ml), extracted with CH_2Cl_2 , dried over MgSO₄, filtered, and the filtrate was evaporated. The residue was purified by column chromatography using hexane/ CH_2Cl_2 as an eluent.

trans-2,3-Diphenyloxirane. A White solid; mp 62–64°C (lit. 61–63°C) [13]; ¹H NMR (CDCl₃, 300 MHz): δ 3.87 (s, 2H), 7.30–7.45 (m, 10H). The ee value was determined by HPLC analysis with a Daicel Chiralcel OD column (eluent: hexane/2-propanol = 95:5, flow rate: 1.0 ml/min, column temperature: 25°C, retention time: 7.3 min (*S*, *S*), 14.5 min (*R*, *R*)).

trans-2-(p-Chlorophenyl)-3-phenyloxirane [13]. A white solid; mp 86–88°C; ¹H NMR (CDCl₃, 300 MHz): δ 3.82 (d, J = 1.8 Hz, 1H), 3.84 (d, J = 1.8 Hz, 1H), 7.24–7.42 (m, 9H). The ee value was determined by HPLC analysis with a Daicel Chiralcel OD column (eluent: hexane/2-propanol = 95:5, flow rate: 1.0 ml/min, column temperature: 25°C, retention time: 8.4 min (*S*, *S*), 10.4 min (*R*, *R*)).

trans-2-(p-Tolyl)-3-phenyloxirane. A white solid; mp 70–72°C (lit. 72–73°C) [13]; ¹H NMR (CDCl₃, 400 MHz): δ 2.37 (s, 3H), 3.83 (d, J = 1.8 Hz, 1H), 3.86 (d, J = 1.8 Hz, 1H), 7.18–7.41 (m, 9H). The ee value was determined by HPLC analysis with a Daicel Chiralcel OD column (eluent: hexane/ 2-propanol = 95:5, flow rate: 0.5 ml/min, column temperature: 25°C, retention time: 12.0 min (*S*, *S*), 18.2 min (*R*, *R*)).

trans-2-(p-Nitrophenyl)-3-phenyloxirane. A pale yellow solid; mp 75–77°C (lit. 73–75°C) [13]; ¹H NMR (CDCl₃, 300 MHz): δ 3.85 (d, J = 1.5 Hz, 1H), 3.97 (d, J = 1.5 Hz, 1H), 7.25–7.45 (m, 5H), 7.52 (d, J = 8.7 Hz, 2H), 8.25 (d, J = 8.7 Hz, 2H). The ee value was determined by HPLC analysis with a Daicel Chiralcel OD column (eluent: hexane/2-propanol = 90:10, flow rate: 1.0 ml/min, column temperature: 25°C, retention time: 16.2 min, 20.7 min).

trans-2-(1-Naphthyl)-3-phenyloxirane [14]. A colorless oil; ¹H NMR (CDCl₃, 300 MHz): δ 3.86 (br s, 1H), 4.49 (s, 1H), 7.38–7.99 (m, 12H); ¹³C NMR (CDCl₃, 75.45 MHz): δ 61.1, 62.0, 122.0, 122.9, 125.6, 125.9, 126.4, 128.2, 128.4, 128.7, 131.2, 133.2, 133.3, 137.2. The ee value was determined by HPLC analysis with a Daicel Chiralcel OD column (eluent: hexane/2-propanol = 95:5, flow rate: 1.0 ml/min, column temperature: 25°C, retention time: 14.4 min, 19.4 min).

trans-2-(2-Naphthyl)-3-phenyloxirane [15]. A white solid; mp 114–116°C; ¹H NMR (CDCl₃, 300 MHz): δ 3.97 (d, J = 1.5 Hz, 1H), 4.04 (d, J = 1.5 Hz, 1H), 7.34–7.88 (m, 12H); ¹³C NMR (CDCl₃, 75.45 MHz): δ 63.0, 63.1, 122.8, 125.0, 125.5, 126.2, 126.4, 127.79, 127.83, 128.36, 128.43, 128.6, 133.2, 133.4, 134.6, 137.1. The ee value was determined by HPLC analysis with a Daicel Chiralcel OD column (eluent: hexane/2-propanol = 98:2, flow rate: 1.0 ml/min, column temperature: 25°C, retention time: 30.9 min, 34.9 min).

X-ray Structural Analysis of 1

A single crystal of **1** ($C_{22}H_{16}S$) suitable for X-ray analysis was prepared by recrystallization from CH₂Cl₂–*n*-hexane. Diffraction data were collected on a Rigaku AFC-7R four-circle automated diffractometer with Mo-K α ($\lambda = 0.719$ Å) radiation and a graphite monochromator at 23°C using the $\omega - 2\theta$ scan technique. Details of the X-ray diffraction study are summarized in Table 3. For a structure analysis and refinement, computations were performed using the TEXAN [16] crystallographic software package of Molecular Structure. Neutral atom scattering factors were taken from Ref. [17]. Anomalous dispersion effects were included in F_{calc} [18]; the values of $\Delta f'$ and $\Delta f''$ were those of Ref. [19]. The TABLE 3 Summary of Crystallographic Data of Compound 1

Empirical formula	C ₂₂ H ₁₆ S
Formula weight	312.43
Crystal system	Orthorhombic
Space group	P2 ₁ 2 ₁ 2 ₁ (#19)
Crystal color	Colorless
Lattice parameters	
a (Å)	22.229 (10)
b (Å)	25.594 (8)
c (Å)	8.59 (2)
<i>V</i> (Å ³)	4888 (9)
Ζ	12
D_{calc} (g cm ⁻³)	1.273
μ (Mo K α) (cm ⁻¹)	1.95
F(000)	1968.00
Diffractometer	Rigaku AFC7R
Radiation	Mo K α ($\lambda = 0.71069$ Å)
	graphite monochromated
Temp. (°C)	23.0
Scan type	ω
Max. 2θ (°)	55.0
No. of reflections measured	5126
No. of observations	2200
$(1 > 3.00\sigma(1))$	
Structure soln	Direct methods (SIR92)
Refinement	Full-matrix least squares
No. of variables	532
Reflection/parameter ratio	4.14
Residuals: R; R _w	0.067; 0.066
Goodness of fit (GOF)	1.15
Max shift/error in final cycle	6.61
Maximum peak in final diff	0.26
map (e A ⁻³)	0.00
iviinimum peak in final diff map (e Å ⁻³)	-0.20

structure was solved by direct methods (SIR92). Three independent molecules of compound **1** occupy a unit cell. The structure of these three independent molecules are almost the same. The carbon atoms at C5-8 positions of the binaphthyl ring were refined isotropically. All other non-hydrogen atoms were refined anisotropically. Hydrogen atoms were included, but not refined. The weighting scheme $\omega = 1/\sigma^2(F_0)$ with $\sigma(F_0)$ from counting statics gave satisfactory agreement analyses.

Preparation of Sulfonium Salt 3

A mixture of optically active sulfide **1** (234 mg, 0.750 mmol) and benzyl bromide (0.09 ml, 0.75 mmol) was stirred in CH_2Cl_2 (5 ml) at room temperature under nitrogen. AgBF₄ (146 mg, 0.750 mmol) was added to the mixture and then the reaction mixture was stirred for 5 h. Removal of the precipitates from the mixture by use of Celite and evaporation of the solvent gave a crude solid product. The crude product was washed with Et₂O to give a

white solid in 82% yield (304 mg, 0.620 mmol); mp 149–151°C; ¹H NMR (400 MHz, CD₂Cl₂) δ 3.63 (d, J = 11.7 Hz, 1H), 3.99 (d, J = 14.7 Hz, 1H), 4.39 (d, J = 12.5 Hz, 1H), 4.47 (d, J = 14.7 Hz, 1H), 4.62 (d, J = 12.5 Hz, 1H), 4.64 (d, J = 11.7 Hz, 1H), 7.23–8.27 (m, 20H); ¹³C NMR (CD₂Cl₂, 100 MHz): δ 39.3, 42.4, 44.4, 122.2, 126.1, 126.5, 126.7, 127.1, 127.31, 127.34, 127.5, 128.4, 129.7, 130.0, 130.1, 130.4, 130.5, 131.5, 135.9; HRMS Calcd for C₂₉H₂₃S *m*/*z* 403.1520 (M⁺ – BF₄), Found 403.1510.

Reaction of Sulfonium Salt 3 with Benzaldehyde

A mixture of the sulfonium salt **3** (98 mg, 0.20 mmol) and pulverized KOH (13.5 mg, 0.240 mmol) was stirred in CH_2Cl_2 (4 ml) at room temperature under nitrogen for 15 min. Benzaldehyde (20.3 µl, 0.2 mmol) was added to the mixture and then the reaction mixture was stirred for 1 h. The resulting mixture was treated with water (10 ml), extracted with CH_2Cl_2 , dried over MgSO₄, and filtered. The filtrate contained 2,3-diphenyloxirane in 37% GLC yield (14.5 mg, 0.074 mmol, biphenyl as internal standard). The filtrate was then evaporated to leave a residue which was purified by column chromatography using hexane/ CH_2Cl_2 as an eluent, the enantioselectivity of the product oxirane being 33% ee.

REFERENCES

- For reviews see (a) Johnson, R. A.; Sharpless, K. B. In Catalytic Asymmetric Synthesis; Ojima, I. (Ed.); VCH: New York, 2000; pp. 231–280; (b) Katsuki, T. In Catalytic Asymmetric Synthesis; Ojima, I. (Ed.); VCH: New York, 2000; pp. 287–325.
- [2] For representative examples see (a) Chang, S.; Galvin, J. M.; Jacobsen, E. N. J Am Chem Soc 1994, 116, 6937–6938; (b) Yang, D.; Yip, Y.-C.; Tange, M.-W.; Wong, M.-K.; Zheng, J.-H.; Cheung, K.-K. J Am Chem Soc 1996, 118, 491–492; (c) Wang, Z.-X.; Tu, Y.; Frohn, M.; Zhang, J.-R.; Shi, Y. J Am Chem Soc 1997, 119, 11224–11235; (d) Takeda, T.; Irie, R.; Shinoda, Y.; Katsuki, T. Synlett 1999, 1157–1159.

- [3] Trost, B. M.; Hammen, R. F. J Am Chem Soc 1973, 95, 962–964.
- [4] Li, A.-H.; Dai, L.-X.; Aggarwal, V. K. Chem Rev 1997, 97, 2340–2372.
- [5] Furukawa, N.; Sugihara, Y.; Fujihara, H. J Org Chem 1989, 54, 4222–4224.
- [6] (a) Aggarwal, V. K. Synlett 1998, 329–336; (b)
 Aggarwal, V. K.; Alonso, E.; Hynd, G.; Lydon, K. M.;
 Palmer, M. J.; Porcelloni, M.; Studley, J. R. Angew
 Chem Int Ed 2001, 40, 1430–1433.
- [7] Li, A.-H.; Dai, L.-X.; Hou, X.-L.; Huang, Y.-Z.; Li, F.-W. J Org Chem 1996, 61, 489–493.
- [8] (a) Julienne, K.; Metzner, P. J Org Chem 1998, 63, 4532–4534; (b) Julienne, K.; Metzner, P.; Henryon, V. J Chem Soc, Perkin Trans 1 1999, 731–736; (c) Zanardi, J.; Leriverend, C.; Aubert, D.; Julienne, K.; Metzner, P. J Org Chem 2001, 66, 5620–5623.
- [9] Miyake, Y.; Oyamada, A.; Nishibayashi, Y.; Uemura, S. Presented at the 79th Annual Meeting of the Chemical Society of Japan, Kobe, Japan, March, 2001; p. 1160, Abstract 2H216.
- [10] Stará, I. G.; Stary, P.; Tichy, M.; Závada, J.; Fiedler, P. J Org Chem 1994, 59, 1326–1332.
- [11] Quite recently, Metzner and co-workers independently reported that the addition of *n*-Bu₄NI improved the yields of the epoxides [8c].
- [12] Chong, J. M.; Shen, L.; Taylor, N. J. J Am Chem Soc 2000, 122, 1822–1823; In this paper, higher enantioselectivities in asymmetric 1,4-addition of alkynylboronates to enones were obtained when (*R*)-3,3'-diphenylbinaphthol was used in place of (*R*)binaphthol.
- [13] Solladié-Cavallo, A.; Diep-Vohuule, A.; Sunjic, V.; Vinkovic, V. Tetrahedron: Asymmetry 1996, 7, 1783– 1788.
- [14] Furukawa, N.; Okano, K.; Fujihara, H. Nippon Kagaku Kaishi 1987, 7, 1353–1358.
- [15] Kendurkarand, P. S.; Tewari, R. S. J Organomet Chem 1976, 108, 175–181.
- [16] TEXSAN: Crystal Structure Analysis Package Molecular Structure 1985 and 1992.
- [17] Cromer, D. T.; Waber, J. T. International Tables for Xray Crystallography; The Kynoch Press: Birmingham, England, 1974; Vol. IV, Table 2.2A.
- [18] Ibers, J. A.; Hamilton, W. C. Acta Crystallogr 1964, 17, 781.
- [19] Creagh, D. C.; Hubbell, J. H. In International Tables for Crystallography; Wilson, A. J. C. (Ed.); Kluwer: Boston, 1992; Vol. C, Tables 4.2 and 4.3, pp. 200.